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A new algorithm, Orthogonal Complement Based Divide-amhd@Lier Algorithm (O-DCA), is presented
in this paper for calculating the forward dynamics of coaisied multi-rigid bodies including those topolo-
gies involving single or coupled closed loops. The algoniik exact and non-iterative. The constraints are
imposed at the acceleration level by utilizing a kinematlation between the joint motion subspace (or par-
tial velocities) and its orthogonal complement. Samplédases indicate excellent constraint satisfaction
and robust handling of singular configurations. Since tlesg@nt algorithm does not use either a reduction
or augmentation approach in the traditional sense for itngake constraints, it does not suffer from the
associated problems for systems passing through singutdigarations. The computational complexity of
the algorithm is expected to i&(n + m) andO(log(n + m)) for serial and parallel implementation re-
spectively, whera is the number of generalized coordinates amid the number of independent algebraic
constraints.

1 Introduction

Computer simulation and associated analysis of the dynbatiavior of multibody systems is an essential
tool for engineers and researchers working in various fielde involved applications include, but are not
limited to, terrestrial and space vehicles, bio-mechdrsgstems, materials modelling, robotics and man-
ufacturing processes. For such model-based engineeribg &ffective, it is essential that the simulation
tools used be computationally efficient, accurate, andsbbihus, the development of algorithms to model
multibody system dynamics has been an active area of résearc

Several algorithms of various computational complexitiase been presented in the literature. The
earliest algorithms for articulated body systems wer€®@f?) complexity [1] (the number of computational
operations increase as a cubic functiompper integration step), with being the number of generalized
coordinates used in describing the system. In the late 1r6sgh the early 1990s emphasis was placed by
a number of researchers on the development of lower conipuddbrder (cost) algorithms [2]-[5]. Several
algorithms were independently derived and developed bpwaruthors for solving the multi-rigid body and
multi-flexible dynamics problem i®(n) complexity [6]-[13]. A brief review and the underlying sitaiities
between many of these different algorithms is discusseedfarence [14].
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a Absolute angular acceleration of handle (joint locatiowjth respect to inertial frame, a:8 1 matrix
a Absolute translational acceleration handle (joint lomal}i with respect to inertial frame, a:3 1 matrix
<
Al Spatial acceleration of pointwith respect to inertial frame Jfg“J
6x1
H* 11 Joint motion map matrix associated with the kinematic jbigtween bodies k and k+1
DF/ (D) Orthogonal Complement matrix associated with the kinemjaiint between bodies k and k+1
JE Joint connecting bodies k-1 and k
JF= Joint connecting bodies k and k+1
q Generalized relative coordinate
u Generalized relative speed
U Time derivative of generalized relative speed
¢ Matrix of inertia coupling terms for individual body or susembly, 6< 6 matrix for rigid bodies
Y Matrix of inertia coupling terms for assembly 66 matrix for rigid bodies
To! Constraint torque at joint 3x1 column matrix
ﬁf Constraint force at joint, 3x 1 column matrix
7t Measure numbers of constraint torque at jojrte. ordered list of non-zero elementsof
fcz Measure numbers of constraint force at jairite. ordered list of non-zero eIementsz?
—1
F. Spatial constraint force at joint= sz|
fc 6x1 i
. —1
Ncl Measure numbers i.e ordered list of non-zero elements of Fl|
¢ J(6=dof)x1
bx 3x 3 skew symmetric matrix for cross product of any vedtor
n The number of generalized coordinates in the system
m The number of independent algebraic constraints
bbandtb | Base and Terminal joints through which the four bar linkagewn in Figure (3) connects to ground
syYs Superscript representing the whole system as a single body
asm Superscript representing the bodies 2,4,5 and 6 from Figues a single body
cT Transpose of any arbitrary matrix C
U Identity matrix
Z Zero matrix
w Useful Intermediate Quantity
X Useful Intermediate Quantity
Y Useful Intermediate Quantity
X Useful Intermediate Quantity
Y Useful Intermediate Quantity
K Useful Intermediate Quantity
D Useful Intermediate Quantity
Fin, Internal Constraint force acting on body 2 in figure (4)
Fext, External Constraint force acting on body 2 in figure (4)

All bold faced symbols and letters represent matrix quigstit

Table 1: The Nomenclature

Many multibody systems of scientific and engineering irgei@volve constrained systems. Such systems
may involve prescribed motion of key points (e.g. an enéetfir), or may contain topologies with closed
kinematical loops. In these situations, the closed kinarablbops are most often modelled by producing
a set ofn equations of motion associated with the unconstraine@sysand a companion set of inde-
pendent algebraic constraint equations which must befisatihroughout the solution of the equations of
motion. These constraint equations may then be used taeijiieeduce out excessive degrees of freedom




producing a minimum dimension systemrof- m equations; ofi) Augment the equations of motion pro-
ducing a larger. + m dimension system of equations involvingredundant state variables. The fi€{n)
methods for such constrained systems were independesggpted in references [15][16] and were of the
augmentation category, while coordinate partitioning firid Recursive Coordinate Reduction [18][19] were
of the reduction type.

Whichever type of procedure is used, there are two pringpablems encountered when dealing with
systems with closed kinematical loops, viz. (1) the saddietgproblem originating from constraint equa-
tions becoming linearly dependent and (2) the accumulatiartegration errors leading to significant drift in
constraint satisfaction. The saddle point problem is @ihieencountered when the system passes through a
singular configuration whereby the constraint Jacobiawoimes rank deficient. A related problem may addi-
tionally occur for reduction approaches whendependencinatrix relating the dependent state derivative(s)
to the independent state derivative(s), which is necedsasuch a formulation, loses rank. By comparison,
the problem of constraint violation error drift can be trddsack to the fact that unless some form of con-
straint stabilization approach is used, the constrairtsrast often imposed at the accelerations, or possibly
the velocity level. Imposing the constraints at the acedien level results in an eventual unstable growth
in constraint violation within a given simulation. The arin constraint violation occurs due to the accu-
mulation of round-off errors from finite precision arithriteéind the introduction of two zero eigenvalues
(one associated with each constant of temporal integatbsreach acceleration level constraint. To over-
come this problem some form of constraint stabilizationftemintroduced into the equations. Constraint
stabilization techniques have been used in various forma fuumber of years. The most common of these
can be found in [20]-[26]. Although introducing a constitastabilization technique can reduce the drift in
the constraint violation significantly, these methods dbgemerally provide full constraint satisfaction, and
come with their own (potentially significant) computatiboast. Unfortunately, in many situations involving
stiff systems and/or systems repeatedly passing near amabjtn singular configurations, the constraint vio-
lation errors can grow rapidly and result in a significanslo§accuracy, making some form of stabilization
essential.

Another concern which may arise when dealing with complestesyis is the considerable additional
expense incurred when dealing with heavily constrainetesys (n ~ n). With so-calledO(n) complex-
ity algorithms, the simulation turn around times scale dimg with the increase in system size (number of
generalized coordinates and hence are more efficient than the traditionéh®) approaches when deal-
ing with articulated body systems whetie>>> 1. Unfortunately, these algorithms do not perform quite as
well when one is dealing with systems involving many kinembtops. In such instances these so-called
O(n) algorithms actual perform a8(n + nm? + m?). Other strategies exist [18][19][27][28] which offer
O(n + m) overall performance, but these procedures are significlst easy to implement and are not as
a rule applicable to all system topologies.

If one wishes to exploit the potential advantages in redsi@dlation turnaround time through the use
parallel computing, then the theoretical lower limit orneetive cost per integration step (turn around time per
temporal integration step) @(log(n)). Thus, if the computations are sufficiently coarse grairajierand
inter-processor communications costs (e.g. communitcaf@ency and data transfer) are adequately low,
then substantial gains may be potentially realized thrdhgluse of parallel computing.

The first parallel algorithm which was botime optimalO(log(/N)) turn around time per temporal in-
tegration step angrocessor optima(theoretically achieves thi®(log(N)) turn around with onlyO(N)
processors) was presented in [29], but was limited to chgtems of N bodies. In [30][31] a Divide and
Conquer Algorithm is presented that can achié{éog(n)) complexity when implemented o@(XN) pro-
cessors in parallel and is applicable for general topokdithe extension of the algorithm for systems with
closed kinematical loops uses a constraint stabilizatiethod together with a formulation utilizing Lagrange
multipliers. The method can degeneratét@?) complexity (if solved sequentially) in the worst case. More
over a necessary matrix used for dealing with loops witheaghocedure can become rank deficient and in
such cases the method requires an alternate formulation.

In this paper, an algorithm is proposed for handling systeitisclosed kinematical loops. The proposed
method uses a Divide and Conquer formulation similar toithf80]. This formulation is time and processor
optimal, but does not include coordinate reduction or Lageamultipliers for constraint imposition. The
procedure implements the spatial Newton-Euler formutetica Divide and Conquer scheme and imposes the
constraints at the acceleration level by using a kinemalitionship involving the orthogonal complement of



the joint motion subspace. The method proposed can easityidaystems in truly singular configurations,
and is applicable for general systems containing eithglaiclosed loops or multiple coupled closed loops.

2 Analytical Preliminaries

This section presents a brief review of the Divide and Conaigorithm for serial chains as found in [30].
This background is essential to understand the handlingmftarminal bodies in the closed loop topologies.
The treatment of non-terminal bodies in the O-DCA is effes§i similar to the method presented in [30]
for chain systems. In section (3) the new procedure is pteddor handling loop closure constraints at the
terminal bodies.

The basic unit of the DCA scheme is the two-handle repretientaf a body. A handle is any selected
point on the body which is used in modelling the interactiohthe body with the environment. The handles
on a body can correspond to a joint location, a center of maasyodesired reference point. The two handles
can even coincide. A body can have any number of handles Boithe algorithm presented here, the joint
locations are chosen as the handles on the body.

Consider two representative bodiBedy k. andBodyk + 1 of the articulated body system as shown in
Figure (1). The two handles @ody#k correspond to the jointg*+ and.J* . Similarly, the two handles on
Bodyk -+ 1 correspond to the jointg" 1" and.Jk+1" .

Using a spatial Newton-Euler formulation, the equationsofion of a representative bo@®pdyk of the
system can be written at the two handles as below

AR
AR

C]leck—F‘i‘C]fQFcki +C]1C3 1)
C§1Ff++C§2Fc]( +C§3 2

HereA*" and A% are the spatial accelerations of the body at the handl&&taand.J%—, respectively.
The termsgfj (i = 1,2 j = 1,2) are the inverse of the spatial inertia terms while the te¢fas(i = 1,2)
are the inertia dependent bias terms. The bias terms alsaic@ontributions from any forces applied to the
body which are determinable directly from the system sfBitese active forces include body forces, actuator
forces, spring-damper forces etc. The tedfifs and F* are the unknown constraint forces acting on the
body at the joint locations. The interactions of the bodyhiite rest of the system are achieved through these
constraint forces. At the beginning of the simulation, therfia dependent terms vizfj as well as the active
forces for each body are either known or can be easily cakdifftom the state of the system. The above
equations then reduce to two sets of equations in two setalafawns viz. the spatial acceleration$’i+
, A¥7), and the constraint forceg'f+ , F¥ ). This set of equations are henceforth referred to as the two
handle equations of motion ofodyk. Similarly the two handle equations of motion 8ody k+1can be
written in the form

Ak+1+ _ CllcfuleJrﬁ + Cllc;leJrr + Cllcg—l A3)

c c
AR = G 1 TR @

There are two main processes in the DCA approach, a hiecaaskembly process and a hierarchic disas-
sembly process. In the hierarchic assembly process, ttaiegsa of motion of each body are written in terms
of the accelerations at each of its two handles (the proeaahay be easily generalized to bodies with more
than two handles). The two handle equations of motion of azassive bodies are then coupled together to
form the two handle equations of motion of the resulting asdg using a recursive set of formulate derived
in section (2.1)

AR Y1 FFr 4+ Y 1 %)
ARFL = Yy M L Y FMY Yy (6)

The two handles of the resulting assembly are the inward ggithe Body k(viz. .J**+) and the outward joint
on theBody k+1(viz. J**t1) and the constraint forces are those acting on the reswdsgmbly at those
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Figure 1: Two Handle Articulated Body

handles. The inertia coupling terni§,;, for the resulting assembly are calculated using a receist of
formulae as discussed in section (2.1) of this paper.

This process begins at the level of individual bodies of y&tean. Adjacent bodies of the system are
hierarchically assembled to construct a binary tree as slowigure (2). Individual bodies that make up the
system form the leaf (base) nodes of the binary tree. Thetiegsaof motion of a pair of bodies are coupled
together using the recursive set of formulae to form the tandhe equations of motion of the resulting
assembly. The resulting assembly now corresponds to a rfatle aext level in the binary tree. Working
up the binary tree in this hierarchic assembly processég aosingle assembly is left as the root (top) node
of the binary tree. The root (top) node corresponds to thehamdle representation of the entire articulated
system modelled as a single assembly. The two handles dodtijscorrespond to the boundary joints of the
articulated system.

The procedure for solving the equations of motion of the (tmt) node using the boundary conditions
is discussed in detail for systems with kinematically ctbisops in section (3). Using the procedure out-
lined there, the spatial accelerations and the constraioe$ on the top node at the terminal handles can
be generated. The hierarchic disassembly process bedimghei solution of the two-handle equations of
motion of the root (top) node. From this solution, the spat@elerations of and constraint forces on the
two handles of the single assembly are known. The spati@l@tion and constraint forces generated by
solving the two handle equations of an assembly are iddiytitee values of the spatial accelerations and
constraint forces on connecting handle on each of the twetitoant assemblies. From these known quanti-
ties, the two handle equations of motion of the constitussémblies can be solved to obtain the constraint
force and spatial acceleration at the connecting joint.example, for a representative assembly made from
Body kandBody k+1, the equations of motion are given by equations (5-6). Ovisglthese equations the
quantitiesA*", A*+1” FF andF*1" are generated. These quantities are then substitutechietiovb-
handle equations of the constituent sub-assemblies s8pfty kandBody k+1 Thus knowing the values of
A*" FK" equations (1-2) can be solved, while frotd+!~ andF*+1" equations (3-4) can be solved. This
process is repeated in a hierarchic disassembly of theybires where the known boundary conditions are
used to solve the two-handle equations of motion of the imatedubassemblies, until spatial acceleration
and constraint forces on all bodies in the system are caémlila

Similar to the scheme in [30], this algorithm works in fouremps, traversing the system topology like a
binary tree. The first and the third sweep work upwards froenl¢faf (base) nodes of the binary tree to the
top node while the second and the fourth sweep work downwdtds input to this algorithm is comprised
of the mass properties of the bodies, joint generalizeddinates and speeds. The first two sweeps generate
the position and velocity of each handle on each node by wsirgssembly-disassembly process similar to
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Figure 2: The Hierarchic Assembly and Disassembly Procgisg Binary Tree Structure

that described in [30]. On completing the two sweeps, thedinate transformations, the state dependent
accelerations, and the active joint forces are obtainegldoh base node. The active forces are state dependent
and include actuator forces on the joints, damping forcelsanly forces like gravity. The final two sweeps
correspond to the hierarchic assembly and the hierarcbasdémbly processes respectively.

In the analytical treatment presented here, directiomeosiatrices and transformation between different
basis are not shown explicitly. Appropriate basis transfitions have to be taken into account for an imple-
mentation of this algorithm. Also, this algorithm uses audint mixed set of coordinates, viz. Cartesian
coordinates and relative coordinates, throughout thevattoh. Mixed set of coordinates has been used in
[32]-[33] for rigid body dynamics.

2.1 Recursive Formulae

The relative acceleration at the joint connectBapyk andBodyk + 1 is given by the following equation
NAk+1T  Npk™ _ Hk/(k+1)u+I_'Ik/(k+l)u )

Inthis equationH’“/(’”l) is the joint motion subspace matrixand« are the relative generalized speeds,
and relative generalized accelerations (translationaan@tation), respectively, at the joint. The column
matrices of the joint motion subspace matrix are the baste@bpace which contains the active forces at
the joint and the joint degrees of freedom (dof). It can berimteted as thé x dof matrix that maps the
dof generalized speeds at the joint int6 & 1 column matrix of spatial relative velocity at the joint. Mat
D"/ is defined to be the orthogonal complement of the joint masigospace matrigl */ *+1) While
H"* 1) is a6 x dof matrix corresponding to théof x 1 column matrix of joint degrees of freedom,
D+ isag x (6 — dof ) matrix that maps the constrained degrees of freedom of the jbhe column
matrices ofD*/ *+1) are the basis of the space in which the constraint forcesgoti the joint lie (i.e. the
column matrices are the basis of this space where the jomsgpport constraint forces). For example, in
a spherical joint, the translational degrees of motion arestrained while the rotational degrees of freedom



are maintained. Hence the corresponding maps maybe given by

1 0 0 0 0 O
0 1 0 0 0 O
k/k+1) _ |0 0 1 k/k+1) _ |0 0 O
H 10 0 0 D 11 0 0 )
0 0 0 0 1 0
0 0 0 0 0 1
By definition of the orthogonal complemest”/ *+1) and D*/(*+1) satisfy the following relation
HF/®DT | pk/t1) — pk/G)T | ppk/ (k1) _ )

Newton’s Third Law requires the constraint force on joifft™!" viz. F¥+1" and jointJ* viz. FF~
are equal in magnitude and opposite in direction. Using rbligtion and substituting the expressions for
NAK andNAKHL from equation (2) and (3) into equation (7), an expressiodfot " is obtained as

. .
[CT + Ch FFTT = [Ch PR — 5T PR 4 ¢y

s JR e g Y (10)
= FETT = [ 4 Gl G FE - G
+C23 _ k+1 Iy = LGRSV Hk/(k+1)u] (11)
Premultiplying equation (10) bp*/ *+ 1" gives
DM TICHT 1 (IR = DM Ch FE - ¢y — ¢ - ¢l
+HY V) 4 D <k+1>THk/ (k+1) (12)

0

From the definition of the orthogonal complement of joint imotsubspace, the constraint forEéJr1+ can
be expressed in terms of the measure numbers of the constr@jnes and constraint forces as

F*’H—l+ _ Dk/(k+l)1§\k+1+ (13)
c
. . = k+1T .
where the constraint force and constraint moment measurders f, * and 7, k+1F , respectively, are
represented as
. 7’: ]C-ﬁ-l+
=~ c
FRT = (14)
C

Substituting relation (13) into equation (12) yields

Dk/(k+1)T[le;r1 + CSQ]D’“/(’”l)F’”ﬁ _ Dk/(kﬂ)T[Ck F’“* _ Ck+1F£c+1*

k/(k4+1)

+Chs — i+ H u)) (15)

The termD*/(+D 7 [¢h+1 | ¢k 1 p#/ (1) gppearing in (15) is a Symmetric Positive Definite (SPD) iratr
and hence there is no problem associated with its inverBlefining the quantityX’ as

X & DM CHT 4 ¢hy DM (16)

F*1" may be determined as

o~

PRt = X DM ek BR TR ey - e B

ul. (17)



The above expression (17) is then premultipliedlbﬂ?/(k“) to get the desired expression for the spatial
constraint forceF*+1"|

cm+1+ — DF/FD) prlt1t

—~—1

k/(k+1)

= DY DM e Fi R 4 - et T (18)
The above expression f(%n"c’“f1+ can be compactly written as below
MY =W F - W R Y (19)
where W = Dk/(kJrl))A(_le/(kH)T (20)
and Y =Wk - By 21)

This expression foFer1+ is substituted in equations (1) and (4), and after some edgeanipulation, the
two equations can be obtained as
ARY = [¢h) = CLW I + LW T FEY 4 ¢l — LY (22)
and - .
AR = GRWEFS (G5 - GPWETEY + 37+ Gy (23)

Equations (22) and (23) can be considered as the two hangétiens of motion of the resulting assembly
of Bodyk andBodyk + 1. The two handles on this assembly are the joiffts and.J**+! . Collecting terms
in above equations, the two handle equations of motion chisembly can be written as

AR = T FAF 4 T FF 4+ 1y, (24)
Ak+17 = TgchkJr + T22Fck+17 + T23 (25)

where nowY;; are the composite inertia of the assembly. From the aboeeasive set of formulae fof ;;
can be obtained as

T =[¢hH —¢hwe (26)
Yo = [Ch - AWK (27)
Yo  =YuT =W (28)
T13 = C]f3 - Cle (29)
Yo =Y (30)

In the associated manipulations, the two bodies are couptegther to form an assembly by expressing the
intermediate (common) joint constraint force in terms @& donstraint forces at the other two handles. This
process can now be repeated for all bodies in the system winetevo handle equations of motion of two
successive bodies or assemblies are coupled togetherthsimgcursive formulae to obtain the two handle
equations of the resulting assembly. This process workatukically exploiting the same structure as that of
a binary tree. At the end of the hierarchic assembly pro¢hesyhole articulated system may be modelled
in terms of the two handle equations of motion of a single mbég The methodology outlined here is
effectively identical to the procedure outlined in [30]ptlgh some intermediate manipulations may appear
to be different. The primary import of this section is thataticulated chain system can be modelled as a
single assembly with handles at the base and terminal jofrttee system. Although the method similar to
that in [30] is presented in this section, any other altermaanipulations to couple together the equations
of motion of consecutive bodies to form the two handle equtiof motion of the resulting assembly are
equally applicable to the method presented in the next@ecin the next section, a new methodology is
outlined that explains how the two handle equations of nmodithe resulting assembly can be solved when
the base and terminal joints are such that the system rettuadgnematically closed loop.
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Figure 3: Simple Single Loop System

3 Procedure for Dealing with Loops

In this section, a procedure is presented for the efficiertyi@te and robust treatment of systems with
kinematic loops. The procedure is first demonstrated fonglsiloop system, and then is generalized to
systems containing multiple loops.

3.1 Single Loop Case

Consider aV body system connected together by kinematic joints. The bady and the terminal body of
the system are connected to the inertial frame, thus foralogp system. Figure (3) shows the representative
topology of this system. Other than the kinematic jointkilig the base and the terminal bodies to the inertial
frame, there is no difference between this system and a dyatem. Hence, proceeding in a manner as
explained in section 2, the-bodysystem can be modelled as a single assembly. The resultmbpawdle
equations of motion of the assembly are obtained as showmwbel

A" = QPR+ GER 4 GE (31)

AT = GFRP+ GE R+ Y (32)
Herebb andtb denote the joints at the base body and the terminal body bghathie system is connected
to the inertial frame. Alsosys implies the inertia coupling terms representing the whgktesm. Since

the system is attached to an inertial frame, the accelestid the two ends can be given by the following
kinematic relation.

AV ppbhgbh 4 E70 (33)
A th thﬂtb + thutb (34)

where H® and H* represent the joint motion subspace of the joiitsand tb by which the system is
connected to the inertial frame. Similarly?® and *® represent the generalized relative accelerations at

.- - bb - th
the joint degrees of freedom ab andtb. The termsH " and B ut represent the state dependent
acceleration terms which can be kinematically calculatfdte solving the equations of motion.

Substituting the equations (33-34) into equations (31a3®) absorbing the state dependent acceleration



terms into the bias term, one obtains,

beilbb _ systb CsusFtb Csys (35)
th’lltb _ C;USbe + C;gsFtb + Csys (36)

The two above equations (35-36) contain four unknowfs F'*, 4** and«!. To eliminate two un-
knowns,:** andf?, the kinematic relationship of the joint motion subspace igmorthogonal complement
as explained by equation (9) is exploited. Multiplying thmee equations byD"")T and (D)7 respec-
tively, whereD® and D" represent the orthogonal complement of the respectiverjoition subspace, one
obtains

0

—_——
(DYTH™ 0™ = (D")T[GYF" + G5 F + ¢ = (37)
(Dtb)Tth ﬂtb _ (Dtb)T[ ;gstb CSySFtb CsyS] _ (38)

0

The above are two equations in two unknowns, 2 and F*. But the matricegD"*)¢;;*¥* and
(D“’)TC” Y% are rank deficient and hence these equations in their présemicannot be solved. In order

to solve these equations, the constraint forces are exqutésserms of the measure numbét® and £
associated with these forces as in equation (13) above.

F* = D"F" and F!"=D"F" (39)
Substituting these expressions for the constraint fortesthe equations (37-38) one obtains

(D) D Y 4+ (D™)T ¢ D F + (D) (8" = 0 (40)
(DTG DY EY + (D) G D FY + (D)7 ¢35 =0 (41)

In these equations, the teri®®*)7'¢,,*¥* D and (D)7 ¢,,*v* D' are symmetric positive definite
(SPD) matrices and there is no problem associated withitharsion. For notational convenience, the above
equations can be represented compactly in matrix form as

X111 Xi2 I:jcbb] _ {XB] 42
[X21 X22} [Fib X23 “42)

where the corresponding;; can be derived from above equation. The matrix in (42) is 8BD withx,, =

x 4. Having solved the above equations for the valueBfand £, the corresponding expression 6}
andF** can be obtained by pre-multiplying the corresponding esgioms by(Dbb) and(Dtb) respectively
as shown in equation (39).

At this point, both constraint forces on terminal and basggoare known. Consequently, the two handle
equations of motion of the single assembly can be solved tailthe spatial accelerations at the corre-
sponding joints. This initiates the hierarchic disassgmpbbcess discussed in section (2) which successively
calculates the spatial accelerations and constraint$ateub-assemblies. This disassembly results in the
spatial accelerations and constraint forces calculatezhoh physical body in the system.

3.2 Multiple Closed Loops

The treatment of coupled closed loops is presented in thigse The methodology presented here is appli-
cable for cases where there are multiple loops as well asskgcwhen a single loop is connected to a chain
structure. Consider the double loop system shown in figure A44¢ seen in the figure, bodids2, 3 form

the upper loop while bodies 5, 6 form the lower loop with body being the common body shared between
the two loops. The objective is to reduce the lower loop insingle assembly by coupling together the two
handle equations of motion of bodi2s4, 5 and6. This single assembly and the bodies in the upper loop
then form a single loop system

10



Figure 4: Coupled Loop System

Proceeding in a manner similar to a chain system, the bddieand6 can be coupled together to form
the two handle equations of motion of the resulting systeredsw. In this case the joints™ and6~ are
the base and terminal joints for the systegsrepresenting the assembly of bodies 4,5, and 6 \Az[‘fij’é
represent the inertia coupling terms of the assembly.

+

sys 4t 5YS 6~ sYs
A = 1'7{ F! +Clg F? +C1g (43)

C C

- SYSs + SyYs - SyYs
AS = CGUFN +GFY + (3 (44)

C

Similarly, the two handle equations of motion of the b@dsan be written as below.

A"
A%

CLFZT + (L F? + ¢y (45)
CHFZT + 5, F2 +(3s (46)

where2™ is the joint between bodiexsand1 while 2 is the joint between bodiesand3.
For bodyz2, the constraint force8?* and 2~ can be further analyzed as

F?T = Fin?t + Feat?" (47)
F2~ = Fin?™ + Fext?™ (48)

Here F'in. represents the constraint force acting on b®ayhich originates from the lower loop. This force
is an internal force when the lower loop is considered as@esystem Fext, is the constraint force acting

on body2 due to the interactions with bodiésand3. Thus if the lower loop were to be represented as a

single assembly with handles at joirds and2~, the terms represented @#in. would disappear and the
termsFext, would represent the constraint forces at the two handldseafdsulting assembly. The objective
thus is to couple the equations of the resulting assemblydids4, 5, 6 with the equations of body 2 to get
the two handle equations of the resulting assembly. Thisnalsly be referred to assm henceforth.
Consider the kinematic expression for the acceleratiorth@two handles of the assembly of bodies
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4,5,6. These can be written as

4t

. 4t
AT A T i (49)
A = AT L HY S+ H Wb (50)
Also note that from Newton’s second law,

F4 an (51)
FC6 = —Fin?~ (52)

Substituting the expressions of4" from equation (49) andi® from equation (50) as well as the ex-
pressions of constraint forces from equation (51-52) ihtodorresponding two handle equations of motion
(43-44), we obtain

4t

.4t
AY = A T L H WY = PP - GY Pin? 4 ¢ (53)
A = AT L HY W+ H W = Pt - G Fin 1 Gy (54)

Subtracting equation (53) from equation (45) and similadyation (54) from equation (46), an expression
for the relative joint acceleration can be obtained as

—H4+@4+ = Cleewt3+ + [C?l + Ci?S]FW? +

Ly Feat? + [C2y + G 1P~ +¢% — Y + B '] (55)
—H® W® = (G Fext? +(¢5 + CS?S]FW? +

CoFeat®™ +(¢3 + CpIFin®™ + (¢35 — Gy + H o] (56)

The orthogonal complemerﬂ?4+ andD® are orthogonal to the joint motion subspace matriegs
and H® . Hence premultiplying above equations (55) and (56)(153f‘+)T and (D°")” and using the
relation from equation (9), the following can be arrived at.

~(@")TH W = o:<D4*>Tc%1Fext2+—<D4*> €+ GYIES + (DY) ¢y Feat?”
—-(D ) (¢l + ¢ IFS + ( ) (€3 - Sys"'H u' ] (57)

—(D°)TH" W = 0:(D6 )1 Featyt — (D¥)T[63 + GYIEY + (D )T ¢hpFeaty”
—(D° )¢5 + GRS + (D )T (¢35 — Sys"‘H uﬁ] (58)

Further note that the constraint forces can be expressednstof the measure numbers and the orthog-
onal complement of the joint motion subspace i.e.

FY" =DV FY  and FS =DS F% (59)

(&

From these, equations (57) and (58) can be manipulated &rateran expression for the internal forces
viz. Fin2" andFin? as shown below.
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(D)T[¢2, + ¢ IFY +

(D*)T(¢2, + Y )FS =

(D4 )TC11F€$755++(D4 )TC12Fe:vt(2:_+(D4+)T[C%3— SUS"'H u? ] (60)
= (D)7 + ¢GYIDY BT 4+ (DY)TICE, + ¢ IDS S
(D) ¢y Feat2 + (DY) ¢hyFeat’™ + (DY)l — ¢ + H' u') (61)
(D% )T[¢3, + 1P + (D% )T[¢3, + GRS =
(D ) Clee:vtg++(D ) szFewtz_'f‘(Dﬁi)T[Cgs SyS+H UG | (62)
= (D°)7[¢3, + ¢ IDY BT + (DO )T3, + ¢34 ID° O
(D® )T ¢4 Feat® + (D® )T ¢EyFeat?™ + (D% )T[¢h, — 34"+ H' o] (63)
In matrix format, the above equations (60-63) can be exptkas
154+ Fext?t
b | = XY [po |+ X)) (64)
F&* Fi Fext?"
= e | = o | = (o) (X)) [ |+ [0 [X] (K] 5)
_ n n + —1
where [X] = (D* )T[C11+CSU8]D4 (D4 )7 [¢ls + ¢15°1D 1 (66)
_(D6 )T1¢3, + ¢4 1D (D° )T[¢5, + ¢55°)D
(D)T¢, <D4*>T412]
nd [Y] = _ . 67
R I < T 0 7
and [K} — (D4j)T[C%3 Sys_"H u ] (68)
|(D° )T¢35 — W H W]
2
and [D] = Z DﬁZ] (69)

In the above manipulations, the matiX is also SPD and hence there is no problem in its formation.

Substituting the expression fﬁ“in?+

andFin?

handle equations of motion of the entire assembly of bodie§4nd 2 can be obtained as

A%

asm

11
asm

21

12
asm

where [

13
asm

and [

e

asm

22

asm

23

in the two handle equations of motion for body 2, the two
i s [Feat2™] | [

I gfm asm:| |:F6xt2 + ggm (70)
[~2

4 e (- ol (x) ) 72
_421 422

[~2

| - () [x] [] 72
€23

This bodyasm now represents a single body in the upper loop. The uppemowags made up of bodies
1, asm and3. This upper loop now reduces to a single loop and can be selactly as in the section (3.1).
Having solved for the accelerations at the handles of eadl imathe upper loop, the same procedure can be
applied for the lower loop to generate the acceleration ofiéwndle on each body of the lower loop.

3.3 Singular Configurations

Multibody systems with closed kinematical loops can ofteldergo motion such that the system passes
through a singular configuration. Singular configuratiorestgipically observed when system enters some
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Figure(a):

Augmentation Method Problem Figure(b)
Reduction Method Problem

Figure 5: Four Bar Linkages for simulating Singular Confagjions

form of a toggle position. Example of such cases can be a fauliikage as shown in figure (5).

When using an augmentation approach for formulating theaops of motion, a common problem
encountered with the system in a singular configuratioresttie constraint Jacobian becomes rank deficient.
A rank deficient constraint Jacobian reduces the systemuaftemns to unsolvable, rendering the formulation
incapable of handling such configurations. A similar prabls seen with a reduction type of approach where
the dependencynatrix loses rank when the system enters a singular configaran either case, in a true
singular configuration, the system of equations cannot beedo Even if the system does not enter a true
singular configuration, but passes near singular statestraint violation errors can grow significantly due
to the ill conditioned constraint Jacobian or dependendyimar his is often encountered as the integration
steps across a singular configuration during a simulatidrcan result in significant errors in the simulation.

The algorithm presented in this paper is able to simulateesys with singular configurations without
running into these problem. This is because neither doefothaulation construct a constraint matrix nor
does it use dependent and independent coordinates. Thas, thie dimensionality of the problem never
changes, the algorithm is free from rank deficiency issu#s ali matrices to be inverted remaining positive
definite.

The ODCA algorithm presented uses a redundant set of g&retaloordinates, but does not carry along
a companion set of algebraic constraint equations. Thetteus no constraint Jacobian to lose rank, but
individual joint constraints are enforced implicitly thrgh the joint space map ). This manner in which
this method avoids singularities appears similar in sorgangs to that with Euler parameters. With Euler
parameter, one deals with a redundant four member set ofgjenesl coordinates (parameters) for the global
and nonsingular description of general spatial rotatiohe €onstraint between these four coordinates are
implicitly enforced. If the constraint were explicitly us¢o reduce out the extra generalized coordinate
(parameter), the representation again may become singular

4 Numerical Examples

In this section numerical results obtained from implenmangample test cases are presented. These test cases
were run with the intent of assessing the basic charadtsrist the presented ODCA approach, relative to
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those obtained using more traditional methods. For thisoeaimulations were run using: 1) the presented
ODCA method; 2) constraint enforcement at the accelerégi@, via Lagrange multipliers; and 3) constraint
enforcement at the velocity level by removing the redundantbles at both the acceleration and velocity
levels [34]. Thus, the following sample cases were all ruthauit the benefit of any form of supplemental
constraint stabilization. In this manner the relative mefithese methods with regard to accuracy and
robustness might be more clearly seen. All the test caseemied here were implemented in Maflb
and the temporal integration of the equations of motion veareied out using thede45 integrator featured

in Matlab™. The absolute and relative tolerances were s¢0td. All bodies in the test cases are modelled
as having length L = 1, with mass dkg and inertia about an axis perpendicular to the page of thergp
1kgm?2. All kinematic joints in the test cases are revolute.

4.1 Single and Coupled Loops

Consider the four bar linkage as shown in figure (3). The ¥alhg figures (6-7) show the results obtained
from a simulation of this system when moving under the eftdagravity. Figure (6) shows the variation
in the angles with respect to time while figure (7) shows théati@n of the constraint violation error with
time. The constraint violation error refers to the absopdsition error in the satisfaction of the loop closer
equation. As can be seen in the error plot, the error is of theraf10~!* i.e. up to machine accuracy.
A similar test case is shown for systems with coupled loopsnditier the seven bar linkage as shown in
figure(4). The results of a 10 second simulation of the systdaased from rest under the effect of gravity
are shown in figure (9). The constraint violation is plottedigure(8). The constraint violation in this case
is also of the order of0—!4 i.e. up to machine accuracy.

Analysis of this error time history indicates that after fivet few seconds of the simulation, the con-
straint violation error grows a&7, without any additional constraint stabilization stratéging used. This
represents a considerable improvement in performanceamveentional constraint enforcement methods.
Specifically, when this same system is modelled through tiiereement of the loop closure constraints at
the acceleration level alone via Lagrange multipliersttigeerror increases #&. Similarly, if the constraints
for this system are enforced a the velocity level, throughetimination of redundant variables, then the con-
straint violation error grows linearly with t. In the sindt®p, and multiple loop configurations investigated,
the presented ODCA procedure consistently showed suclteddionstraint violation error growth relative
to more traditional methods.

4.2 Singular Configurations

Two test cases are simulated to compare the performancésddlgorithm for systems repeatedly passing
through singular configurations. These test cases are showigure (5). For each of these systems 20
second simulations were carried out, with the systems baatgd on by gravity, and released from rest
from a non equilibrium position. In each case, the systeniliegum position, about which the systems
oscillate produces a numerical singularity. As such thesedases offer a challenge to traditional constraint
enforcement methods. When the function evaluations ocearrthe singular configuration, a significant loss
of accuracy is incurred due to the ill conditioning of thetsys. If the function evaluation occurs on (or too
near) a singular configuration, then these traditional waghwill fail completely. The results are shown in
Figure (10).

For the system shown in Figure (5-a), the simulation resulitsined with the present algorithm are
compared with a reference simulation generated using amewigtion approach with Lagrange multipliers.
When using this approach, the constraint Jacobian for ylsitem loses rank when the coordinatdoecomes
zero. In this configuration there are three possible saistie.a) the system passes though the vertical and
remains in a parallelogram configuratibpthe systems jumps to ttemti-parallelogram(crossed) circuit of
motion orc) bar A becomes kinematically locked in the vertical directés bars B and C swing as a unit as
a pendulum about hing@p.

Similarly, for the system shown in Figure(5-b), the simiglatusing the O-DCA is compared against a
reference simulation generated using a reduction apprdacthe reduction approacfi is selected as the
independent acceleration variable wigh g3, ¢, as the dependent acceleration variables. With this system,
the dependency matrix prescribigg ¢s, ¢4 as a function ofj; becomes singular as the system enters the
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toggle position a, = 90°. In this configuration the dependency equations offer twotgms with a further
increase iny; i.e. a) hinge point P will move to the left ds) move to the right.

In all case the presented ODCA method significantly out peréal the traditional Lagrange multiplier
and reduction approaches. The constraint violation emee histories for each of these are presented in
figures 10. The relative robustness and accuracy of the meb€®©DCA was particularly evident when
for each of these mechanisms, the systems was started witbreaero initial velocity in a truly singular
configuration. The ODCA was unaffected and performed theilsition without difficulty, while the more
traditional constraint enforcement methods all failed iaalately and completely.

4.3 Discussion

When simulating dynamics of systems with constraints, threstraints are most often imposed at the accel-
eration, or possibly the velocity level. The constraint mjion at acceleration or velocity level introduces
zero eigenvalues associated with each constant of temipéeglation. This problem is further exacerbated
with accumulation of round-off errors from finite precisiarithmetic. Thus, imposing the constraints at the
acceleration or velocity level results in an eventual upistgrowth in constraint violation which can grow
exponentially for a given simulation. This problem can Hewaated by introducing some form of constraint
stabilization into the equations. Although introducingoastraint stabilization technique can reduce the drift
in the constraint violation significantly, these methodshab generally provide full constraint satisfaction,
and come with their own (potentially significant) computatl cost. The onus is thus on the underlying
formulation to keep the constraint violation at a minimum.

The results obtained from the implementation of the alparifor sample test cases are indicative of the
excellent performance of this algorithm for systems witigg or coupled loops. Although the constraints
are imposed at the acceleration level, the constraint tmlaerror growth achieved with the ODCA was
consistently superior to that obtained using even veldeitgl constraint enforcement with more traditional
constraint enforcement methods. Even though there is a gmabth in the error, the magnitude of the
error is far smaller than what may be expected for a compaidahlgth simulation using acceleration level
constraintimposition with either augmented or reductippraach. The error can be further reduced with the
use of a constraint stabilization technique or by imposirggdonstraint at the velocity level.

For systems which pass through singular configuration, @m®pmance of the present algorithm is far
superior to that of a true augmentation approach as well &slaction type approach with the constraint
imposition at the acceleration level. For the test caseslsied, the acceleration level augmented approach
failed to converge, while the reduction approach showecdgglarror in constraint violation. The performance
of the present algorithm is comparable with the reductiqgrag@ch with a velocity level constraint imposition.
In fact, for the system simulated, the present algorithregalightly better results. Simulations run with both
the reduction and augmentation approaches failed whetysiters entered a true singular configuration. The
results shown here for these approaches are for simulatibea the system does not enter a true singular
configuration but passes through it. By comparison, the atkgiresented here continued to run correctly
even when it entered a truly singular configuration (not jesr singular).

5 Conclusion

In this paper, a new algorithm is presented for calculatimgforward dynamics of constrained multibody
systems, including those with single or coupled closeddodjme algorithm is simple to implement and the
computational expense 3(n) when implemented in serial. Due to the binary-tree strctiithe formula-
tion, the algorithm would achievelagarithmic complexity for parallel implementation. The algorithm is
exact and non-iterative. The implementation results at@iexcellent constraint satisfaction for systems with
single as well as coupled loops, even when the constraiisfaaton is enforced at the acceleration level.
The performance of the algorithm is better than comparaplerighms for modelling systems which pass
through singular configurations. The algorithm can be edgdrfor flexible body systems modelled using a
component mode synthesis formulation. The implementatidime constraints at the velocity level using this
algorithm as well as performance measures for larger syséeenof current research interest for the authors.
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Figure 6: Results for Single Loop
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Figure 7: Constraint Violation in Single Loop
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Figure 8: Constraint Violation in Coupled Loops
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Comparison of ODCA with Reduction approaches
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